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Abstract—A model is constructed of a thin film of a rigid-plastic material bonded to a linear elastic
substrate subject to a state of mismatch strain between the two materials. The purpose of the study
is to investigate the existence of deformation localization in the film that is periodic along the
direction of the bi-material interface. Bifurcation phenomena could be a possible precursor to
debonding phenomena. The conditions necessary for these undulations to appear are given by a
bifurcation equation which relates the internal film stress to the relative stiffness of the substrate
and the thickness of the film.

l. INTRODUCTION

The study of thin film structures from the point of view of solid mechanics is becoming
increasingly relevant to various arcas of modern technology. Ultra-thin to moderately thick
metallic and organic films arc grown on relatively massive solid substrates for packaging
purposes as well as for the actual manufacturing of microclectronic devices. The simplest
structures consist of single films grown over relatively massive solid substrates and more
complicated ones involve multi-layers of several films with different chemical, clectrical,
optical, thermal and mechanical properties. There are various methods used to grow films,
but chemical vapor deposition and clectron beam deposition are the two most commonly
used techniques. Inherent to these deposition methods is the introduction of residual and
thermal stresses in the thin films. Subsequent heat treatments can relieve some of these
stresses, but other processes such as ion-implantation of the film-substrate composite can
increase the internal film stress (sce for instance Eernisse, 1977). Regardless of their origin,
internal stresses can have deleterious effects on the optical, electrical and mechanical
propertics of thin films. It is therefore natural to be concerned with phenomena which lead
to the degradation of the propertics and, consequently, the quality and integrity of thin
film structures. For instance, residual stresses can give rise to anomalous behavior in
microelectronic devices that arc made of such film—substrate composites. Ramirez et al.
(1988) have recently studied the impact of residual stresses via the piezoclectric effect on
some electrical properties of gallium arsenide field effect transistors.

Studies of thin film stability found in the literature deal primarily with thermal stability.
Within this context, a thin film is said to be stable if it retains its desicable properties over
a wide range of temperatures. The focus of this paper is on a different kind of stability,
namely, mechanical stability. We are interested in the stability of a uniform state of
deformation of a thin rigid-plastic film bonded to an clastic substrate in the presence of
mismatch strain. Two important sources of this strain are lattice mismatch between the film
and the substrate, and different thermal expansion coeflicients. Within the framework of
continuum mechanics, we focus on the existence of deformation instabilities that are periodic
along the direction of the bi-material interface. These deformation modes can occur when
the film is deformed in tension parallel to the interface and are not desirable in applications.

Various investigators, such as Weissmantel es al. (1979). have reported that high
intrinsic stresses build up in thin film layers. A recent study on the shear stress distribution
at a film-substrate interface is given by Freund and Hu (1988). As a result of these stress
build-ups, films that exceed a certain thickness, or presumably a given internal stress level,
tend to wrinkle and debond from the substrates. The process of wrinkling and debonding
gives rise to observable patterns known as stress relief forms. Some of the patterns have
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been documented for diamond-like carbon thin films by Weissmantel er «l. (1979), and
more recently, by Nir (1984). It should be pointed out that these two studies dealt with
hard films. and elastic buckling theories seem to be sufficient to adequately describe the
observed phenomena. In the current study. the motivation for concentrating on deformation
instabilities of plastic origin stems from the conjecture that the bulk deformation required
to relax stresses, associated with differential thermal strains and lattice mismatch, is in many
instances plastic flow (see Jackson and Li. 1982). Apparently. however, no systematic
experimental study has been reported which deals precisely with the type of plastic instability
which we analyze in this paper.

A solid body is said to be in a state of homogeneous deformation when it is subjected
to a uniform state of strain. The departure from such a state and subsequent appearance of
an inhomogeneous or localized deformation mode is known as a bifurcation phenomenon.
The theoretical framework for this kind of phenomenon in plastic solids was pioneered by Biot
(1965). Since then, much analytical and numerical work has been done in what has now become
a very active research area. Most relevant to this study is the notable work of Hill and
Hutchinson (1975). They considered bifurcation phenomena in the plane strain tension test off
a block of material with a lincarly incremental constitutive law. The present study. though not
as exhaustive as theirs, follows the same methodology.

Also relevant to this work is a paper by Steif (1986) which examines interface instabilitics
in a bi-material composite consisting of a finite thickness layer between two infinite half
spitces. [n his work, Steif takes the same lincarly incremental constitutive law for the materials
composing the layer and the adjacent halt spaces. In our study, only the layer is made of a
lincarly incremental material, whereas the substrate is taken to be lincarly clastic, Less recently,
Doris and Nemat-Nasser (1980) considered the problem of a layer on the surface of a half
space subject to overall compressive loading (i.e. both layer and substrate experience the same
compressive loading). These authors studied various combinations of constitutive laws lor the
layer and the half space. Even though the problem that they considered seems at first glanee
very similar to ours, our study ditfers in a fundmental way from theirs in that the loading of
the bodies is duc o an initial strain mismatch. This gives rise to an overall (compressive)
loading of the layer and a compressive (tensile) one of the substrate. Morcover, we capitadize
on the assumption that the Liyer is very thin in order 1o arrive at a very simple criterion for
determining the onset of bifurcation.

[n Scction 2, the incremental boundary value problem to be solved in this paper is
developed. Emphasis is placed on the assumptions made and on the general point of view that
underlies this work. Section 3 begins with @ summary of the constitutive cquations that are
used in the ensuing analysis. The section ends with the derivation of the velocity ficld that
satisties the kinematic constraints ot the boundary value problem. In Section 4, the ditterential
equations for the nominal stress rates are found. The bifurcation equation is determined in
Section S by focusing on only one of the three governing equations available from Section 6.
Finally, a discussion of the results is given in Section 7.

2. STATEMENT OF THE PROBLEM

We are interested in modelling a thin rigid-plastic film bonded to a lincar clastic substrate
of relatively large extent subject to a state of mismatch strain between the two materials. We
assume that the substrate remains clastic while the film undergoes plastic deformation ; this is
a likely scenanio when the clastic moduli of the film and the substrate differ by at least an order
of magnitude, but the strengths are comparable. The geometry to be analyzed is depicted in
Fig. 1. The thin film is centered about a local Cartesian coordinate system (x,, x,). The
deformation is planc strain and is confined to the (v, x.) planc. The film is assumed to be
initially homogencous and orthotropic (possibly isotropic) with respect to the x, and x, axes.
Initially the substrate and the flm arc stress free. The film is then subjected to uniaxial
homogencous straining along the x,-dircction. with principal stretches along the x| and x» axes.
At the instant under consideration (i.c. the pre-bifurcation state), the film has a thickness 2a.
and principal stresses ¢, = ¢ > 0 and 7, = (). We now inquire whether the film can wrinkle.
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Fig. I. ldealized geometry of the film-substrate composite and schematic representation of interfacial
shear stress.

The point of view we adopt is that the state of uniaxial stress in the film is incurred during
the fabrication of the composite, and we do not concern ourselves with the precise nature of
the fabrication process. It should be mentioned that, for the case of strained layer epitaxy, the
atomistic picture we have in mind is that the crystal in the substrate has larger (smaller) lattice
dimensions than those of the material in the ilm, When the film is grown epitaxially on the
substrate, tensile (compressive) stresses are introduced into the film due to the lattice mismatch.

A solution to the problem described above is obtiained by choosing a lincarly incremental
constitutive law for the film, and by posing the boundary valuc problem in terms of rates of
change of nominal stress £, and velocities ¢, For the remainder of this paper, roman subscripts
will denote components of the tensors with respect to the xy and x, axis. In the ensuing analysis,
periodic deformation modes are sought, This makes the boundary value problem tractable
since we can exploit symmetry conditions by confining attention to a finite segment of the film,
the length of which is equal to half the wavelength of the periodic surface deformation mode.
As shown in Fig. 1, the current half-wavelength is taken to be equal to 2a,. Along the lateral
edges of the segment, symmetry requires that the shear stress and the longitudinal component
of velocity v, vanish. The top surface of the segment must remain traction free, and continuity
of tractions and displacements between the film and the clastic substrate must be respected
along the bottom face.

In the spirit of the thin film hypothesis, we only require continuity of displacements in
the x -direction and of sheur tractions along the film-substrate interface. Both requirements
can be fulfilled simultancously by requiring the extensional strain in the x,-direction to be
continuous across the interfuce at x, = —a,. Thisis an equivalent statement of Hadamard’s
lemma in the context of the problem at hand. Since the proposed bifurcation analysis will
be done by focusing on a finite segment of the rigid plastic film, a form of the continuity
requirement is needed which involves only the film fields P,, and v,. In rate form, the
aforementioned condition states that, at the film-substrate interface, the rate of change of
the extensional strain &9, of the substrate is equal to the spatial gradient in the x,-direction
of the longitudinal velocity component v, of the film. Our immediate goal is to find an
expression for &7, in terms of the interfacial shear stress t(x,) which is common to both
film and substrate (see inset, Fig. 1). In order to extract the rate form of this expression,
t(x,) will later be replaced by Py (x,, —a3). In effect, we are stating that the Cauchy
stress-rate and the nominal stress-rate are cqual at the film-substrate interface, to insure
consistency of the lincar and non-lincar theories along this boundary.

As previously stated, we assume that there is no traction acting along x, = —a, other
than t{x,). Thercfore, from plane strain elasticity, along the surface of the elastic half space
£, is

| —v2

E

where g,,(x;, —a,) is the non-vanishing component of the Cauchy stress along the surface

eilx. —ay) = o (x;, —as), (2.1
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due to the tangential traction t(x;). Poisson’s ratio and Young's modulus for the substrate
are v and E, respectively.

The Cauchy stress at the surface of the elastic half-space x. = —2u.. due to a con-
centrated tangential load at x, = { of magnitude 7(S). is obtained from the solution to
the Flamant-Boussinesq problem (see Fung. 1965): o, (x,. —a.) = =2T({)/n(x, = 3).

Replacing T($) by 1($) dS and summing over the entire length of the film—substrate interface,
results in the expression for o (x,. —a.) that we seek. Substituting this stress in (2.1) yields

gplxy. —az) = — TLE \f*__gdi- (2.2)
-~ ~

2(!—\'3)J" ($)

We conclude this section by summarizing the boundary condittons for the incremental
problem to be considered :

t(ta. x) =0, (2.3)
Pii(*a,.x;) =0. (2.4)
Pix,. +a) =0, (2.5)
Py(x,.uy) =0, (2.6)
and
" ey =ay) = = ) f Puld = 27
AW nl . Xy —¢

Y CONSTITUTIVE EQUATIONS AND THE STREAM FUNCTION

For rate insensttive, incrementally lincar solids in the rigid-plastic limit, the constitutive
law 1s (sce Hill and Hutchinson, 1975)

4
=0, (3.1)

where 5,, is the co-rotational rate of the Cauchy stress, and £, is the spatial strain-rate. In
an in-plane umaxial test along cither the x, or the x, axes, the tangent modulus is
4u*. Furthermore, in this constitutive law, hydrostatic pressure has no influence on the
deformation.

In terms of nominal stress rates f’,, and veloctties ¢, the constitutive relations (3.1)
reduce to

P =Py = (2;[“'_ 6> ot B Cz*: 3.2)
ot 2)\0x, axy/) o

. (“1‘:
Pl‘—l)u:(fﬁ\_ . (3.3)

X

where g is the current principal Cauchy stress in the film along the x;-axis. In addition to
(3.2) and (3.3), the nominal stress rates must satisfy momentum balance. For incompressible
materials. a uscful form of the equations of incremental equilibrium is (see Hill and
Hutchinson, 1975)
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¢ g 4 i s G, Les .
x, [P —P)]+ 7 Py = ax (P + P2,

¢ . . ¢ . é , .

3 (NP =P - —Pi.= (2P + P12 3.4
X X, CX,

The incompressibility condition ¢v,/éx, + ¢v./¢x> = 0 implies the existence of a stream
funcuon ¥(.x,. x,) such that

cy cy
=Y =

{x, AT

(3.5)

[t was shown in the original work of Biot (1965) or Hill and Hutchinson (1975) that in the
nigid-plastic limit the governing equation for Y(x,. x.) is:

szw 82'[’
Fralia i 0. (3.6)
The presence of shear bands or slip lines in the film is closely related to the fact that the
partial differential equation (3.6) is hyperbolic. Solutions of (3.6) give rise to families of
pairs of characteristics in the (v, x;) planc which bisect the coordinate directions (keep in
mind that the coordinate directions are also the principal directions). The characteristic
directions correspond to slip directions or lines along which shearing is localized.

As mentioned in Section 2, we scarch for deformation modes which are periodic in the
x-direction. Such modes can be generated by choosing the following stream function:

Ylxpx:) = glx)cos (n,x)). 3.7
In light of (3.6), the function g(x;) must satisfy
g (x)+nig(xy) =0. (38)
The general solution to (3.8) can be written as
g(xy) = Asin(g,x,+ ), 3.9
where A is a constant amplitude, and ¢ is a phase angle. The key to successfully solving
the current problem is not to consider modes which are symmetric or anti-symmetric
about the x-axis, but rather take ¢ as an unknown. In this kind of analysis involving a
homogencous system of equations (sce for instance Hilf and Hutchinson, 1975), the ampli-
tude A will remain undetermined and therefore can be set to unity at the outset. However,
we choose to curry this constant along in the analysis untif it is evident that it has no bearing
on the final solution. For notational purposes, it is convenient to introduce the auxiliary
functions C(x,) = A cos (4,x:+ ¢) and S(x;) = A sin (7,x:+ ¢).
In light of (3.9). the velocity ficld is obtained via (3.5) and may be written as

vi(xxa) =0, Clxz)cos (i,.xy),  va(xy,x2) =1, S(x:)sin(n,x,). (3.10)

The kinematic constraint (2.3) is therefore satisfied when
m=5—. n=135"". (3.11)

Moreover, it can be shown that the smoothness condition (2.4) is automatically satisfied
by (3.10). and that the remaining boundary conditions are automatically satisfied by (3.8).
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4. GOVERNING EQUATIONS FOR THE NOMINAL STRESS RATES

Substituting the velocities ¢, (.x,, x-) and t'»{x, x.) as givenin (3.10) into the constitutive
relations (3.2} and (3.3) results in
Pii— Py = (a—3u*)nisin(n,x)Clxy). (3.0

Pl:“[):x = mzfcos(m.\:.)S(x:). 4.2)

It should be noted that a feature of the rigid-plastic case is that there are no separate
constitutive relations for P,. and P.,. Consequently. the mathematical structure of these
two stress rates may be obtained intuitively. The end condition (2.6) can be satisfied by
taking

Poa(x,.x2) = F(xi)cos (7, x). 4.3
where F(x;) is an unknown function. It follows from (4.2) that we must take

Pa(x,.x2) = G(x,)cos (n,x)). (4.4)
where G(x,) is a sccond unknown function. Substituting (4.1), {(4.3) and (4.4) into (3.4)

yiclds

: ) . .
(o =4 COpx ) + G (x ) cos (x) = ~ 1( P+ Pl

&xy

, ) . . ¢ , .

B =i Stnxy) + 1 Fx)]sin (1)) = ax P+ Pl (4.5)

where prime denotes differentiation with respect to v, These tust two differential equations
suggest that we take

5[13,,(.\",,\‘1)+1313(.\‘1..v1)] = H(x,)sin (X)), (4.6)

where H(x,) is the third and last unknown function that is introduced.

We can obtain governing equations in terms of the unknown functions F(x,), G(x,)
and H{(x,) by appropriately substituting the expressions (4.3), (4.4) and (4.6) into the
equations (4.2) and (4.5). The resulting relations are

F(x,) = G(x5) = oniS(x.), 4.7

I

G'(x)+n, H(xy) = 1du* = o) Cx2), (4.8)

H'(x3) —n, F(x;)

il

Hau* —o)nS(xz). (4.9)

Equations (4.7) through (4.9) can be suitably manipulated to yield uncoupled second
order differential equations for F(x;), G(x,) and H{x,). We can obtain the sought after
bifurcation ¢quation from any one of the three resulting equations. We will proceed to
derive only the governing equation for G(x,). Naturally, all three differential equations are
needed if one wishes to solve explicitly for the nominal stress rates P, (xy, x;) via equations
(4.1), (4.3). (4.4) and (4.6). These steps offer no added mathematical difficulty and will be
omitted from the current discussion. Differentiating (4.8) and substituting the resulting
expression for H'(x,) from (4.9) and for F(x,) from (4.7) yields the following governing
equation for G(x.):
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G (x2) +niG(xy) = —4u*niS(xy). (4.10)

The differential equation (4.10) must be solved subject to the boundary conditions

G(a) = 0. @.11)

G'(a:) = (du* —o)n Claz). (4.12)

G(—a;) = ,L:nfﬂ—a;). (4.13)
1=+

G'(—a:) = (du* —o)n C(—ay). (4.14)

There boundary conditions were obtained by expressing the original boundary conditions
(2.5) through (2.7) in terms of the unknown functions F(x,), G(x;) and H(x,), and then
making judicious use of equations (4.7) through (4.9).

5. BIFURCATION EQUATION

The general solution of the differential cquation (4.10) is
G(x2) = Cosin(n,xX:) + ¢, €os (,X3) 4+ 20*n) x-,Clxs) — u*niS(x,). (5.0

where ¢, and ¢, are integration constants that must be determined from the boundary
conditions (4.11) through (4.14). Let G, (x,) be the solution to (4.10) that satisfies the
boundary conditions (4.11) and (4.12). Note that these boundary conditions are prescribed
along the top face of the film. Likewise, let G (x,) be the solution which satisfies the
boundaury conditions (4.13) and (4.14). The solution to (4.10) that we scek must satisty the
boundary conditions at the top and bottom fuaces of the film. By requiring that G, (x,) and
G {x,) be equal to cach other, we can obtain a constraint among a, u*, ¢, a,, 1,, E and v.
The resulting expression is an cigenvalue equation and is usually identified as the bifurcation
cquation, Either solution G, (x,) or G (x,), when used tn conjunction with the bifurcation
equation, will satisfy both sets of boundury conditions. Alternatively, one can apply the
boundury conditions (4.11) -(4.14) to the solution (5.1} and obtain the bifurcation condition
from the requirement that the integration constants ¢, and ¢, cannot both be zero.

The individual expressions for G, (x,) and G _(x,) are rather long and unwieldy, and
are of no use to us except for obtaining the cigenvalue equation. For this rcason, we
choose not to display them here but rather directly provide the simpler expression for
G.(x)—GC {(x) =0,

A, . )
o [ (= 2p*) sin (o Xy 4+ 2 4y~ @) = ni E* cos (1, X, + 21,42 — )

+ 41 Q2u* =) sin (X =201as — @) =i By ay p* + E*Ycos (X2 +$)] =0, (5.2)
where £* = E/2(1 —v%). Onc can expand the trigonometric functions in (5.2) and rewrite
the resulting expression as the sum of a sin (n,x,) term and a cos (n,.x;) term being equal
to zero. In gencral, the latter equation can hold only if the cocflicients of sin (n,x,) and cos

(1,x,) identically vanish. This last requirement gives rise to the following two equations:

o —2*) = E*sin(2na;— @)+ (8n a,u*+ E*)sing
eTI = sin (21,a,) sin ¢ )

(5.3)

E*cos 2na,—¢)+ (8 au*+ E*)cos @

2o =2u*) =
2o —2u*) sin (27,a,) cos ¢

(5.4)
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We can solve for the phase angle ¢ by subtracting (5.4) from (5.3) and expanding the
trigonometric functions. The result is

o —E*sin{2n,4-)
o E‘ s . N S
il ,m:sm( S a4 E* (5.5
Furthermore, (3.4) can be rewritten as
6= l+qgoesc (2 + : [cotyg+tan¢l. {5.6)

8

where the non-dimensional variables ¢ = o/4u*, & = £*/;*, and ¢ = 1,4, have been intro-
duced. The variable ¢ corresponds to the non-dimensional wave number; when ¢ | 0 the
wavelength of the inhomogeneous deformation modes becomes arbitrarily targe with respect
to the thickness of the film, and when ¢ T oo the wavelength becomes arbitrarily small.
Likewise, & 15 a measure of the relative stiffness of the substrate ; when & = 0 the substrate
ts infinitely compliant, and as & 1 so the substrate becomes perfectly rigid. The tangent of
¢ which appears in equation (5.6) is casily obtained from (5.5) via the trigonometric identity
sin (24) = 2 tan ¢ (1 +tan” ¢) as

s i (fmea
| o T ' 5.7

Equation (5.6) is the so-called bifurcation equation which must be satisfied it defor-
mation instabilitics are to be possible. In the absence of the elastic substrate, & = 0, this
equation reduces to

g = %i '—7“’(“['“““. (5.8)

As expected, equation (5.8) 13 equivalent to equation (AL11) in Hill and Hutchinson
(1975) where the plus (minus) sign corresponds to symmetric (anti-symmetric) incremental
deformation modes.

An inspection of (5.6) reveals that the eigenstress 4 1s singular when ¢ = n/2, n = 1,
3,5,---. Morcover, ¢ is also singular when ¢ = 0. This is unlike the case of a rigid-plastic
block in plune tension, for which the bifurcation equation is (5.8), where 6 | 1 as ¢ 1 0. The
stress level o = dp*, or ¢ = 1, is the so-called maximum load. Finally, it should be pointed
out that as the substrate becomes increasingly rigid the cigenstress required for bifurcation
becomes unbounded. but it does so in a non-uniform fushion. This completes the deter-
mination of the biturcation equation (5.6) for the boundary value problem that was posed
in Scction 2

6. DISCUSSION OF RESULTS

We focus attention on the first order symmetric mode which is obtained by tuking the
plus sign in (5.7) and letting n = | in (3.11), that is, ¢ = na,/2a,. This is the cigenmode
that has physical significance, for an cxamination of (5.5) will reveal that the least tensile
eigenstress ¢ will occur when ay/a, < 1. Likewise, if the film is under compression one
would only have to consider the first order anti-symmetric mode. In this symmetric regime
6 is unbounded when ¢ =0 and when ¢ = =/2. This means that there is an absolute
minimum of 4, say .. when g is in the range 0 < ¢ < #/2. There is at least one value of the
non-dimensional wave number, denoted by g¢.. corresponding to 6.
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Fig. 2. Plot of the relation between the eigenstress and the non-dimensional wave number for several
values of the relative stiffness of the substrate.

Figure 2 shows curves of ¢ versus ¢ for several values of €. The curve for & = 0 is the
result of Hill and Hutchinson (1975) for the bifurcation of a rigid-plastic block in plane
tension. As previously discussed, for non-zero values of ¢ there is a critical value ¢, for
which bifurcation from the homogencous state is possible. A consequence of this is that when
a film of thickness 24, reaches the appropriate minimum eigenstress &, the inhomogencous
periodic deformation modes that can be observed will have a wavelength 4a, equal to
2nas/q.. In the same spirit, one can also state that if 4. is not achicved in the film, then
sinusoidal modes of the form (3.7) will not be observed. Other conclusions may be drawn
from Fig. 2 by fixing the value of the eigenstress ¢ rather than fixing the thickness of the
film.

The above observations are illustrated in Fig. 3 where the bifurcation curve is shown
for the case of & equal to 0.25. This value of £ is obtained by considering a substrate with the
elastic properties of polyethylene, a film made of a power-law material with the properties of
copper, and a mismatch strain of 2%. The Young's modulus and Poisson’s ratio of poly-
ethylene are assumed to be 2 x 10*N/m? and 0.45, respectively. The stiffness parameter and
the hardening rate for copper (99.94% pure) are taken to be 4.5x 10* N/m? and 0.33,

4.0
£=0.25 /

/
3.0+ /

“post-bifurcation’” domain /
film

—f———
20 4 can wrinkle

Oc homogeneous deformation
. q
o
0.0 T —ﬁ' T T T —T T T 1
00 01 02 03 04 05 66 07 08 08
2q/m

Fig. 3. Plot of the rclation between the cigenstress and the non-dimensional wave number for the
case of ¢ = 0.25. The analytical model cannot predict the nature of the inhomogeneous deformation
in the post-bifurcation domain, i.e. for values above 4..
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Fig. 4. Plots of the critical values of the eigenstress and the non-dimensional wave number as a
function of the variable §.

respectively. The model predicts that the wavelength of the inhomogeneous deformation is
almost ninc times the thickness of the film. This wavelength mode is sufficiently long to be
consistent with the thin film hypothesis introduced in Section 2.

One must keep in mind that when using values of ¢ which result in short-wavelength
modes, the thin film assumption, which requires that the various field quantities vary on
length scales which are targe compared with the thickness of the film, breaks down. In this
case, one could relax the thin film idealization in the original statement of the boundary
value problem and require continuity of transverse displacements and of normal tractions,
Instead of Pya(x(, —ay) = 0in (2.5), one would have an expression relating Py, to ¢y along
the interface. Then, restricting attention to small film thicknesses, one could see how
ditterent the predictions from the improved model are from those presented in this paper.
For small values of £ the differences are expected to be insignificant.

Another observation that can be made from Fig. 2 is that as the degree of constraint
of the substrate on the film increases, higher cigenstresses are required to meet the bifur-
cation condition. This in turn means that, for a fixed film thickness, as the substrate becomes
stiffer the wavelength of the inhomogeneous deformation mode becomes shorter. Figure 4
shows the locus of values of & and ¢, for a realistic range of the non-dimensional variable
&, Over most of the range of ¢ shown in the plot the internal film stress necessary for
bifurcation is approximately two and a half times the maximum load stress.

7. CONCLUSIONS

In the previous sections the mechanical stability of a strained thin plastic film bonded
to an clastic substrate has been analyzed. It is found that pertodic surface instabilities can
occur and that the appearance of these undulations depends on the amount of internal
stress in the film, the rigidity of the substrate, and the thickness of. the film. Unlike
the simpler case of the plane tension test of a rigid-plastic block, where departure from
homogencous deformation can take place just following maximum load, bifurcation
phenomena is only possible at stress levels higher than maximum load. Morcover, the
analysis reveals that having fixed the film thickness and material parameters, bifurcation
cuan only occur for a critical value of stress and a critical wavelength of the inhomogencous
deformation mode.
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